
Neural Processes Reading Group

Andrew Foong, Sebastian Ober, Stratis Markou

2nd December 2020



Introduction

What are Neural Processes (NPs)?
• They are:

1 a meta-learning framework.
2 modelling stochastic processes.
3 using neural networks.

• The hope: benefits of GPs and deep learning together.

• Introduced in Garnelo et al. [2018a].

• Many variants/extensions since proposed.



Outline

This reading group in conceptual order.

1 Introduction: meta-learning stochastic processes. (Andrew)

2 Conditional Neural Processes. (Sebastian)

3 (Latent) Neural Processes. (Stratis)

• Layout follows
https://yanndubs.github.io/Neural-Process-Family, made
by Yann Dubois, Jonathan Gordon and Andrew Foong.
• Code for many NPs.

https://yanndubs.github.io/Neural-Process-Family


Problem Set-up

Task: prediction under uncertainty in the small-data regime
• Examples:

• Predicting time-series.
• Image completion. View images as functions from the 2D plane

R2 → R.

• Could be difficult to design a GP kernel for this kind of data — can
we learn this structure?



Meta-Learning

Meta-learning is learning to learn.

• View learning as a map from data sets to predictives.

• Given observed context set DC = {(x (c), y (c))}Cc=1.

• Make predictions at a target set xT = {x (t)}Tt=1.

• NPs use neural networks to directly parameterise map
DC 7→ p(yT |xT ,DC).



General Challenges in Designing NPs

Two challenges:

1 Standard NNs eat fixed-length vectors. NPs eat entire datasets:
• Datasets can be of varied sizes.
• The map DC 7→ p(yT |xT ,DC) should be invariant to permutations

of DC .

2 For any target set xT , the NP must return p(yT |xT ,DC).
• Are these predictives be consistent for varying xT ?
• I.e. do NPs define a valid stochastic process?

We’ll discuss challenge 1 first.



First Challenge: Machine Learning on Sets

Deep learning on sets is well-studied, e.g. Zaheer et al. [2017].

• Key result is a representation theorem:

Theorem 1 (Zaheer et al. [2017], Wagstaff et al. [2019]).

Let M ∈ N, and let f : [0, 1]M → R be a continuous,
permutation-invariant function. Then there exist continuous maps
φ : [0, 1]→ RM and ρ : RM → R such that for all X ∈ [0, 1]M ,

f (X ) = ρ

(
M∑
i=1

φ(Xm)

)

• Implement φ and ρ as NNs.

• Think of X as a data set and RM as a representation space.

• Each data point Xm is mapped to φ(Xm), then summed.

• Known as a deep sets or sum decomposition.



Computational Graph

Common NP computational graph:

• The encoder Encθ maps each datapoint to a representation.

• Representations are aggregated to form R.

• The decoder Decθ maps R along with target input x (t) to
predictions.

Many concrete instantiations during Seb and Stratis’ talks.



Second Challenge: Consistency of Predictives

NPs map DC 7→ p(yT |xT ,DC) for any xT .

• What could go wrong with an arbitrary mapping?

• Consider 1D regression, with xT = {1}, x′T = {1, 2} for a fixed DC .

• We obtain p(y1|{1},DC) and p(y1, y2|{1, 2},DC).

• Must satisfy a consistency condition:∫
p(y1, y2|{1, 2},DC) dy2 = p(y1|{1},DC).

• If not, predictions change arbitrarily depending on which points are
in the target set!

Kolmogorov Extension Theorem guarantees that:

• If predictives consistent under marginalisation and permutation,

• they are indeed marginals of a stochastic process (random function).



The Two NP Sub-families

Two main flavours:

1 Conditional Neural Process Family assumes the predictive is
factorised conditioned on the representation R(DC).

p(yT |xT ,DC) =
T∏
t=1

p(yt |x (t),R(DC)).

2 (Latent) Neural Process Family uses the representation R(DC) to
define a latent variable z ∼ p(z|R).
• The predictive is factorised conditioned on z:

p(yT |xT ,DC) =

∫ T∏
t=1

p(yt |x (t), z)p(z|R(DC))dz.

• Allows for dependencies, unlike Conditional NPs!



Episodic Training

How to train NPs?

1 Sample dataset D from a large collection {Di}Ntasks
i=1 .

2 Randomly split into context and target sets: D = DC ∪ DT .

3 Pass DC through the NP to obtain the predictive p(yT |xT ,DC).

4 Compute objective L which measures predictive performance on the
target set.

5 Compute ∇θL to optimise parameters of the NP.

That’s it! Now we’ll take a closer look at the Conditional Neural
Process family.



The Conditional Neural Processes Family

As we mentioned earlier, members of the Conditional Neural Process
Family (CNPF) assume the following factorisation for the predictive:

p(yT |xT ,DC) =
T∏
t=1

p(y (t)|x (t),R(DC)).



The CNPF factorisation implies consistency

We briefly show how this factorisation implies the consistency required
for stochastic processes:

1 Permutation: Let π be any permutation of {1, . . . ,T}. Then

T∏
t=1

p(y (t)|x (t),R(DC)) =
T∏
t=1

p(yπ(t)|xπ(t),R(DC))

= p(yπ(1), . . . , yπ(T )|xπ(1), . . . , xπ(T ),DC)

2 Marginalisation: Let A ⊂ {1, . . . ,T} and Ac be its complement.
Then∫

p(yA, yAc |xA, xAc ,DC)dyAc =

∫
p(yA|xA,DC)p(yAc |xAc ,DC)dyAc

= p(yA|xA,DC)

Therefore, CNPF members do indeed satisfy both conditions necessary
to be stochastic processes!



Decoders and the Maximum Likelihood Objective

We have already discussed the encoder in neural processes, which
encodes a context set DC into a global representation R(DC). We now
discuss the decoder in the CNPF:

1 The decoder Decθ takes the representation R(DC) and a target
input x (t), and maps them to parameters of the predictive
distribution

2 For all the CNP types we consider, we assume a Gaussian predictive:

p(y (t)|x (t),R(DC)) = N (y (t);µt , σ
2
t )

(µt , σ
2
t ) = Decθ(R(DC), x (t))

In CNPs, there are no random variables we need to perform inference
over - we can optimize using maximum likelihood!

L = log p(yT |xT ,DC)



Conditional Neural Processes

We start with the simplest member, known just as the CNP [Garnelo
et al., 2018a].

• Encoder: R(DC) = Encθ(DC) = 1
C

∑C
c=1MLP([x (c), y (c)])

• Decoder: (µt , σ
2
t ) = Decθ(R(DC), x (t)) = MLP([R(DC), x (t)])

For wide enough MLPs, this should be able to predict any mean µt and
variance σ2t !



Conditional Neural Processes (cont’d)



Conditional Neural Processes (cont’d)



Conditional Neural Processes (cont’d)



Conditional Neural Processes (cont’d)



Conditional Neural Processes (cont’d)



Conditional Neural Processes (cont’d)



Conditional Neural Processes (cont’d)



Conditional Neural Processes (cont’d)



Conditional Neural Processes (cont’d)



Conditional Neural Processes (cont’d)



Conditional Neural Processes (cont’d)



Conditional Neural Processes (cont’d)



Attentive CNPs

We’ve seen that even though the results are quite impressive, the
standard CNP has a tendency to underfit.

1 This may be due to the fact that the representation R(DC) is the
same for each target input, x (t)

2 Instead, we may want to focus on context points closer to the
target input, and give less weight to those further away

3 A great way of achieving this is attention: learn a weighting
wθ(x (c), x (t)) for each context-target point pair to be used in the
encoding

R(DC , ·) = Encθ(DC) =
C∑

c=1

wθ(x (c), ·)MLP([x (c), y (c)])



Attentive CNPs (cont’d)

This motivates the Attentive CNP (AttnCNP) [Kim et al., 2019].

• Encoder:
R(DC , ·) = Encθ(DC) =

∑C
c=1 wθ(x (c), ·)MLP([x (c), y (c)])

• Decoder: (µt , σ
2
t ) = Decθ(R(DC), x (t)) = MLP([R(DC , x

(t)), x (t)])



Attentive CNPs (cont’d)



Attentive CNPs (cont’d)



Attentive CNPs (cont’d)



Attentive CNPs (cont’d)



Attentive CNPs (cont’d)



Attentive CNPs (cont’d)



Attentive CNPs (cont’d)



Attentive CNPs (cont’d)



Attentive CNPs (cont’d)



Attentive CNPs (cont’d)



Attentive CNPs (cont’d)



Attentive CNPs (cont’d)



Generalisation and Extrapolation

We now look at the ability of CNPs to generalise outside of the region in
which they were trained.



Generalisation and Extrapolation (cont’d)



Generalisation and Extrapolation (cont’d)



Generalisation and Extrapolation (cont’d)



Generalisation and Extrapolation (cont’d)



Translation Equivariance

We want predictions to depend on relative positions of context points,
not absolute positions. This can be achieved with translation
equivariance.



Convolutional CNP (ConvCNP)

One model that encodes translation equivariance is the convolutional
CNP (ConvCNP) [Gordon et al., 2019], using a special set operation
called SetConv and a CNN, motivated by a ConvDeepSets result.

• Encoder: R(DC , ·) = Encθ(DC) =
SetConv(CNN({SetConv(DC)(x (u))}Uu=1))(·)
• Decoder: (µt , σ

2
t ) = Decθ(R(DC), x (t)) = MLP(R(DC , x

(t)))



ConvCNP (cont’d)



ConvCNP (cont’d)



ConvCNP (cont’d)



ConvCNP (cont’d)



ConvCNP (cont’d)



ConvCNP (cont’d)



ConvCNP (cont’d)



ConvCNP (cont’d)



ConvCNP (cont’d)



ConvCNP (cont’d)



ConvCNP (cont’d)



ConvCNP (cont’d)



Issues with the CNPF

One of the main issues in the CNPF is caused by the factorisation
assumption on the predictive - we cannot draw coherent function
samples, as could be done with a GP.



Issues with the CNPF (cont’d)

Another issue is the Gaussianity assumption - this does not allow for
multimodality in the predictive.



Latent Neural Processes

CNPs do not distinguish noise and uncertainty due to finite DC .

(a) CNP (b) What we would like to have

CNPs push function uncertainty to the noise layer!



Why care about function uncertainty?

1 Bayesian Optimisation (Thompson sampling)

Figure 2: Bayes. opt. with Thompson sampling [Garnelo et al., 2018b].

2 Reinforcement Learning (Contextual bandits)

3 Sample plausible functions for downstream estimation

Figure 3: Precipitation over Europe, edited from Foong et al. [2020].



Why care about function uncertainty?

3 Sample plausible functions for downstream estimation

Model identification with neural processes [Dubois et al., 2020].



Why care about function uncertainty?

3 Sample plausible functions for downstream estimation

Model identification with neural processes [Dubois et al., 2020].



Why care about function uncertainty?

3 Sample plausible functions for downstream estimation

Model identification with neural processes [Dubois et al., 2020].



Why care about function uncertainty?

3 Sample plausible functions for downstream estimation

Model identification with neural processes [Dubois et al., 2020].



Why care about function uncertainty?

3 Sample plausible functions for downstream estimation

Model identification with neural processes [Dubois et al., 2020].



Why care about function uncertainty?

3 Sample plausible functions for downstream estimation

Model identification with neural processes [Dubois et al., 2020].



Why care about function uncertainty?

3 Sample plausible functions for downstream estimation

Model identification with neural processes [Dubois et al., 2020].



The Latent Neural Process model

We would like to use this model
zd xd ,n

yd ,n

n = 1 : Ndd = 1 : D

Learn an approximate posterior by VI:

p(DC∪T ) ≥ Eq(z|DC∪T )

[
log p(DC∪T |z) + log

p(z)

q(z |DC∪T )

]

Garnelo et al. [2018b] introduce, this objective but do not use it.

Anecdotal evidence that it causes under-fitting. Instead they consider

p(DT |DC) ≥ Eq(z|DC∪T )

[
log p(DT |z) + log

p(z |DC)

q(z |DC∪T )

]

the marginal likelihood of the target conditioned on the context.



The Latent Neural Process model

p(DT |DC) ≥ Eq(z|DC∪T )

[
log p(DT |z) + log

p(z |DC)

q(z |DC∪T )

]
But p(z |DC) is intractable. Garnelo approximate p(z |DC) ≈ q(z |DC)

L = Eq(z|DC∪T )

[
log p(DT |z) + log

q(z |DC)

q(z |DC∪T )

]
Not a lower bound anymore. Can be regarded as defining the model

xnCd

ynCd zd

xnTd

ynTd

n = 1 : NTd
n = 1 : NCd d = 1 : D



The Latent Neural Process model

xnCd

ynCd zd

xnTd

ynTd

n = 1 : NTd
n = 1 : NCd d = 1 : D

Defines the conditional prior as q(z |DC).

Chooses the varational posterior q(z |DC∪T ).

But this does not correspond to a single consistent Bayesian model.

Performs VI over a family of models (one for each possible dataset).



Not a single consistent Bayesian model

Given context data DC , conditional prior defined as

p(z |DC) := q(z |DC)

New datum x (n+1), y (n+1) arrives

DC′ = DC ∪ {(x (n+1), y (n+1))}

Should update the prior by Bayes

p(z |DC′) =
p(y (n+1)|x (n+1), z)q(z |DC)

Z

Instead LNP defines a separate model for DC′

p(z |DC′) := q(z |DC′)



Latent Neural Process data fits

LNP fitted to data, from Dubois et al. [2020].



Latent Neural Process data fits

LNP fitted to data, from Dubois et al. [2020].



Latent Neural Process data fits

LNP fitted to data, from Dubois et al. [2020].



Latent Neural Process data fits

LNP fitted to data, from Dubois et al. [2020].



Latent Neural Process data fits

LNP fitted to data, from Dubois et al. [2020].



Latent Neural Process data fits

LNP fitted to data, from Dubois et al. [2020].



Attentive Latent Neural Process

Computational graphs (left) Latent NP (right) Attentive LNP [Dubois et al., 2020].



Attentive Latent Neural Process

LNP with/without attention from Dubois et al. [2020].



Attentive Latent Neural Process

LNP with/without attention from Dubois et al. [2020].



Attentive Latent Neural Process

LNP with/without attention from Dubois et al. [2020].



Attentive Latent Neural Process

LNP with/without attention from Dubois et al. [2020].



Attentive Latent Neural Process

LNP with/without attention from Dubois et al. [2020].



Attentive Latent Neural Process

LNP with/without attention from Dubois et al. [2020].



Convolutional Latent Neural Process

Computational graphs (left) ConvCNP (right) Latent ConvNP [Dubois et al., 2020].



Convolutional Latent Neural Process

LNP with/without convolutional architecture from Dubois et al. [2020].



Convolutional Latent Neural Process

LNP with/without convolutional architecture from Dubois et al. [2020].



Convolutional Latent Neural Process

LNP with/without convolutional architecture from Dubois et al. [2020].



Convolutional Latent Neural Process

LNP with/without convolutional architecture from Dubois et al. [2020].



Convolutional Latent Neural Process

LNP with/without convolutional architecture from Dubois et al. [2020].



Convolutional Latent Neural Process

LNP with/without convolutional architecture from Dubois et al. [2020].



Conclusions

• NPs do meta-learning on functions.

• Family splits into conditional and latent models.

Strong points:

• Fast inference at test time.

• Well calibrated uncertainty (if enough D’s available).

• Data driven, more flexible than hand-picked priors.

• Can bake in (some) required properties - translation equivariance.

Weak points:

• Need a large collection of meta-learning datasets.

• Underfitting and smoothness issues.



References I

Y. Dubois, J. Gordon, and A. Y. Foong. Neural process family.
http://yanndubs.github.io/Neural-Process-Family/,
September 2020.

A. Foong, W. Bruinsma, J. Gordon, Y. Dubois, J. Requeima, and
R. Turner. Meta-learning stationary stochastic process prediction with
convolutional neural processes. Advances in Neural Information
Processing Systems, 33, 2020.

M. Garnelo, D. Rosenbaum, C. Maddison, T. Ramalho, D. Saxton,
M. Shanahan, Y. W. Teh, D. Rezende, and S. A. Eslami. Conditional
neural processes. In International Conference on Machine Learning,
pages 1704–1713, 2018a.

M. Garnelo, J. Schwarz, D. Rosenbaum, F. Viola, D. J. Rezende,
S. Eslami, and Y. W. Teh. Neural processes. arXiv preprint
arXiv:1807.01622, 2018b.

http://yanndubs.github.io/Neural-Process-Family/


References II

J. Gordon, W. P. Bruinsma, A. Y. Foong, J. Requeima, Y. Dubois, and
R. E. Turner. Convolutional conditional neural processes. arXiv
preprint arXiv:1910.13556, 2019.

H. Kim, A. Mnih, J. Schwarz, M. Garnelo, A. Eslami, D. Rosenbaum,
O. Vinyals, and Y. W. Teh. Attentive neural processes. arXiv preprint
arXiv:1901.05761, 2019.

E. Wagstaff, F. Fuchs, M. Engelcke, I. Posner, and M. A. Osborne. On
the limitations of representing functions on sets. In International
Conference on Machine Learning, pages 6487–6494, 2019.

M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov,
and A. J. Smola. Deep sets. Advances in Neural Information
Processing Systems, 30:3391–3401, 2017.


	References

