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Variational Inference: Advantages and Limitations

• Variational inference converts inference into optimization.

• Amount of bias depends on the expressiveness variational
posterior.

• Posterior is commonly assumed to be in exponential family,
often mean-field Gaussian.

What if we want to use a more flexible variational posterior?
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More Flexible VI Families

There have been many proposals for more flexible posteriors,
including:

• Structured variational families (Saul & Jordan, 1996).

• Mixture distributions (Bishop et. al. 1998).

• Hierarchical posteriors (Ranganath et. al. 2016).

• Normalising flows (Rezende & Mohamed, 2015).

• Sampler-based variational posteriors (Salimans et. al. 2015).

Implicit variational inference is a recently developing field that
offers a very flexible posterior family.
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Implicit Distributions

Implicit distributions are distributions where we can:

• Sample from them easily.

• Take gradients of the samples with respect to the parameters
of the distribution.

Example: Let ε ∼ N (0, I ) and let z = fW (ε) be the output of a
neural network that takes ε as input. The distribution q(z) is an
implicit distribution.

• We can differentiate z wrt W by backpropagation.

• We don’t have an explicit expression for q(z).

• q(z) can be very flexible.

Could we use implicit distributions as variational families for VI?
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VI for latent variable models

Consider the following latent variable model, where x are observed:

pθ(x) =

∫
p(z)pθ(x |z)dz

• Want posterior p(z |x) and also maximum likelihood estimate
of θ.

• Intractable since we usually can’t compute pθ(x).

• Introduce a variational distribution qφ(z) and minimise
KL(qφ(z)||p(z |x)).
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ELBO

It is easy to show that:

Fθ,φ ≡ Eqφ [log pθ(x |z)]− KL(qφ(z)||p(z))

= log pθ(x)− KL(qφ(z)||p(z |x))

≤ log pθ(x).

Fθ,φ is known as the variational free energy or evidence lower
bound (ELBO).

If we can evaluate Fθ,φ:

• minimise KL(qφ(z)||p(z |x)) by maximising wrt φ.

• approximate max likelihood learning by maximising wrt θ.

Get inference and learning from a single objective!
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ELBO

Fθ,φ ≡ Eqφ [log pθ(x |z)]− KL(qφ(z)||p(z))

= Eqφ [log pθ(x |z)]− Eqφ

[
log

qφ(z)

p(z)

]
The first term can be estimated by Monte Carlo sampling.

• Gradients calculated using the reparameterisation trick.

• Tractable as long as can sample from qφ and evaluate
log pθ(x |z)

The KL term depends on the form of the distributions:

• If qφ and p in exponential family, analytically tractable.

• If log
qφ
p can be evaluated, can use reparameterisation trick.

• if qφ is implicit, log
qφ
p cannot be evaluated.
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Methods for Implicit Variational Inference

Implicit Variational Inference

Density Ratio
Estimation

Adversarial
Methods

AVB
(Mescheder

et. al. 2017)
(Huszar 2017)

KIVI
(Shi et.

al. 2017)

Hierarchical
Families

SIVI (Yin and
Zhou 2018)

UIVI
(Titsias and
Ruiz 2019)
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Density Ratio Estimation

Fθ,φ = Eqφ [log pθ(x |z)]− Eqφ

[
log

qφ(z)

p(z)

]
In order to evaluate the ELBO, need to estimate log

qφ(z)
p(z) given

only samples from qφ and p.

The general problem of estimating p1(z)
p2(z)

given only samples

z1 ∼ p1 and z2 ∼ p2 is known as density ratio estimation (DRE).

Here we focus on two very different approaches:

• Discriminator based/adversarial methods.

• Kernel methods.
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Discriminators for Density Ratio Estimation

Idea: We can translate the DRE problem into a supervised learning
problem.

Let D(z) be a discriminator network. Train D(z) to maximise the
objective function:

Eqφ [logD(z)] + Ep [log(1− D(z))]

This has the interpretation:

• Draw zi ∼ qφ with probability 1/2 and zi ∼ p with probability
1/2 for i = 1, 2, ...N.

• Let the label yi = 1 if zi was drawn from qφ, and 0 otherwise.

• This is the expected reward of a logarithmic scoring rule.
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Proper Scoring Rules

Consider a classifier that returns a probability vector r(z) where
ry (z) is the probability of class y given observation z .

• A proper scoring rule defines a reward variable that takes the
value S(r(z), y) if y is the true class for z .

• The expected reward Ez,y [S(r(z), y)] is uniquely maximised
by the true probabilities ry (z) = p(y |z)

• The logarithmic scoring rule S(r(z), y) = log ry (z) is strictly
proper.

Hence the objective is maximised when

D∗(z) = p(y = 1|z)

=
qφ(z)

qφ(z) + p(z)
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Approximate ELBO

If we assume the discriminator D(z) globally maximises the
objective, then

D∗(z) =
qφ(z)

qφ(z) + p(z)

log
qφ(z)

p(z)
= log

D∗(z)

1− D∗(z)

Therefore we can approximate the ELBO as:

Fθ,φ = Eqφ [log pθ(x |z)]− Eqφ

[
log

qφ(z)

p(z)

]
≈ Eqφ [log pθ(x |z)]− Eqφ [logD(z)− log(1− D(z))]

where gradients of all terms are obtained using the
reparameterisation trick.
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Case study: Adversarial Variational Bayes (AVB)

Mescheder et. al. 2017 perform approximate inference on the
‘eight schools’ example.

• Two layer network for the implicit posterior and 5 layer
ResNet for the discriminator.

• For every posterior update step, perform 2 steps for
discriminator.

They compare AVB with full rank Gaussian VI and HMC.
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Eight Schools Posterior
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Adversarial Variational Bayes for VAEs
Mescheder et. al. 2017 also train a VAE with an implicit
distribution as the encoder.
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Adversarial Variational Bayes for VAEs
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Pitfalls of Discriminator-based Implicit VI

Get correct ELBO if the discriminator is optimal. However in
practice:

• Discriminator may not be sufficiently flexible.

• Discriminator objective is Monte Carlo sampled.

• qφ changes with every training iteration - discriminator needs
to ‘catch up’.

Hence the approximate ELBO is biased and there is no way to
estimate/bound the error - not a true lower bound.
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Kernel Implicit Variational Inference

Recall,

L(φ) = Eqφ [p(x | z)] + Eqφ

[
log

(
p(z)

qφ(z)

)]
As before, the first term can be handled directly with MC methods.

Main Idea: Define r(z) = p(z)
qφ(z)

. Approximate r using kernel

methods.
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Approximation to r

Solve the minimization problem:

min
r̂∈H

1

2

(∫
(r̂(z)− r(z))2qφ(z)dz

)
Note that,

1

2

(∫
(r̂(z)− r(z))2qφ(z)dz

)
=

1

2
Eqφ

[
r̂(z)2

]
− Ep [r̂(z)] + C

We can sample from both p and q in order to approximate the loss
function.
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RKHS and Representer Theorem

A regularization term is introduced, and the objective function that
is minimized is:

min
r̂∈H

1

2

nq∑
i=1

r̂(zqi )2 −
np∑
j=1

r̂(zpj ) +
λ

2
‖r̂(z)‖2H


The representer theorem tells us that there exists a set of
coefficients {αi , βj} such that

r̂(z) =

nq∑
i=1

αik(zqi , ·) +

np∑
j=1

βjk(zpj , ·).
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Optimal Solution

The proposed optimization function is convex, and has closed form
solution,

βββ =
1

λnp
1np and ααα = − 1

λnpnq
(Kq + λI)−1Kqp1np .

This estimator for r̂(z) is used in place of
qφ(z)
p(z) to estimate the

density ratio in the ELBO1.

1It may need to be clipped in order to be nonnegative
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KIVI Algorithm

Algorithm 1 Algorithm for Approximate ELBO

Sample zpi ∼ p(zi )
Sample zqi ∼ qφ(zi )
Compute log

(
r̂(zqi )

)
according to the formulas given on the pre-

vious two slides.
Use this estimator in place of the density ratio. The first M
samples from q are used to estimate the likelihood term.
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Application: Training A BNN

• Reduces number of parameter in inference hypernetwork with
a matrix multiplication network

⇒ X(i+1) = ReLU
(
A

(i)
1 X(i)A

(i)
2

)
+ B(i).

• Inference in a BNN with AVB (or similar adversarial methods)
is not generally feasible due to the high dimensional input
space for the discriminator.
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KIVI on BNN for MNIST
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Hierarchical Variational Distributions

Define the posterior by the sampling process:

ε ∼ q(ε)

z ∼ qφ(z |ε)

Or equivalently:

qφ(z) =

∫
qφ(z |ε)q(ε) dε

qφ(z |ε) is a simple distribution (e.g. exponential family) whose
parameters are a complicated function of ε (e.g. neural network
with weights φ).
This is called a semi-implicit distribution - still very flexible.
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Semi-Implicit Variational Inference (Yin and Zhou 2018)

A tractable lower bound on the ELBO can be derived via the chain
rule of KL-divergences:

L =Ez∼q(z)

[
log

(
p(x , z)

Eε∼q(ε) [q(z |ε)]

)]
≥Eε∼q(ε)

[
Ez∼q(z|ε)

[
log

(
p(x , z)

q(z |ε)

)]]
=: Llower

Issue: Using this bound will lead to qφ(z) to be a member of the
same family of distributions as qφ(z |ε)
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A Sequence of lower bounds

Solution: Sequence of lower bounds such that Llower = L0 and
limK→∞ LK = L.

LK = Eε0:K∼q(ε)
[
Ez∼qK (z|ε0:K )

[
log

(
p(x , z)

qK (z |ε(0:K))

)]]
where

qK (z |ε0:K ) :=
1

K + 1

K∑
k=0

q(z |εk)

These can be shown to be monotonically increasing.
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Shortcomings of Implicit Inference

• Many more hyperparameteres to choose/tune than
exponential family VI.

• Potentially unstable (particularly using adversarial
approaches).

• Unclear how suitable approximate ELBO is for model
comparison (except maybe with SIVI)

• Introduces bias into estimation of gradient of ELBO (except
maybe UIVI)
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Summary of Implicit VI

• Implicit VI allows us to use arbitrarily complicated variational
posteriors

• This flexibility comes at a cost of needing to tune many
hyperparameters, additional computational cost, or a risk of
unstable algorithms.
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