Implicit Variational Inference

David Burt and Andrew Foong

March 2019

Variational Inference: Advantages and Limitations

- Variational inference converts inference into optimization.
- Amount of bias depends on the expressiveness variational posterior.
- Posterior is commonly assumed to be in exponential family, often mean-field Gaussian.

What if we want to use a more flexible variational posterior?

More Flexible VI Families

There have been many proposals for more flexible posteriors, including:

- Structured variational families (Saul & Jordan, 1996).
- Mixture distributions (Bishop et. al. 1998).
- Hierarchical posteriors (Ranganath et. al. 2016).
- Normalising flows (Rezende & Mohamed, 2015).
- Sampler-based variational posteriors (Salimans et. al. 2015).

Implicit variational inference is a recently developing field that offers a very flexible posterior family.

Implicit Distributions

Implicit distributions are distributions where we can:

- · Sample from them easily.
- Take gradients of the samples with respect to the parameters of the distribution.

Example: Let $\epsilon \sim \mathcal{N}(0, I)$ and let $z = f_W(\epsilon)$ be the output of a neural network that takes ϵ as input. The distribution q(z) is an implicit distribution.

- We can differentiate z wrt W by backpropagation.
- We don't have an explicit expression for q(z).
- q(z) can be very flexible.

Could we use implicit distributions as variational families for VI?

VI for latent variable models

Consider the following latent variable model, where *x* are observed:

$$p_{\theta}(x) = \int p(z)p_{\theta}(x|z)dz$$

- Want posterior p(z|x) and also maximum likelihood estimate of θ .
- Intractable since we usually can't compute $p_{\theta}(x)$.
- Introduce a variational distribution $q_{\phi}(z)$ and minimise $KL(q_{\phi}(z)||p(z|x))$.

FI BO

It is easy to show that:

$$egin{aligned} \mathcal{F}_{ heta,\phi} &\equiv \mathbb{E}_{q_{\phi}}\left[\log p_{ heta}(x|z)
ight] - \mathit{KL}(q_{\phi}(z)||p(z)) \ &= \log p_{ heta}(x) - \mathit{KL}(q_{\phi}(z)||p(z|x)) \ &\leq \log p_{ heta}(x). \end{aligned}$$

 $\mathcal{F}_{\theta,\phi}$ is known as the variational free energy or evidence lower bound (ELBO).

If we can evaluate $\mathcal{F}_{\theta,\phi}$:

- minimise $KL(q_{\phi}(z)||p(z|x))$ by maximising wrt ϕ .
- approximate max likelihood learning by maximising wrt θ .

Get inference and learning from a single objective!

ELBO

$$\mathcal{F}_{\theta,\phi} \equiv \mathbb{E}_{q_{\phi}} \left[\log p_{\theta}(x|z) \right] - \mathcal{K}L(q_{\phi}(z)||p(z))$$

$$= \mathbb{E}_{q_{\phi}} \left[\log p_{\theta}(x|z) \right] - \mathbb{E}_{q_{\phi}} \left[\log \frac{q_{\phi}(z)}{p(z)} \right]$$

The first term can be estimated by Monte Carlo sampling.

- Gradients calculated using the reparameterisation trick.
- Tractable as long as can sample from q_ϕ and evaluate $\log p_\theta(x|z)$

The KL term depends on the form of the distributions:

- If q_{ϕ} and p in exponential family, analytically tractable.
- If $\log \frac{q_{\phi}}{p}$ can be evaluated, can use reparameterisation trick.
- if q_{ϕ} is implicit, $\log \frac{q_{\phi}}{p}$ cannot be evaluated.

Methods for Implicit Variational Inference

Methods for Implicit Variational Inference

Density Ratio Estimation

$$\mathcal{F}_{ heta,\phi} = \mathbb{E}_{oldsymbol{q}_{\phi}}\left[\log p_{ heta}(x|z)
ight] - \mathbb{E}_{oldsymbol{q}_{\phi}}\left[\log rac{oldsymbol{q}_{\phi}(z)}{oldsymbol{p}(z)}
ight]$$

In order to evaluate the ELBO, need to estimate $\log \frac{q_{\phi(z)}}{p(z)}$ given only samples from q_{ϕ} and p.

The general problem of estimating $\frac{p_1(z)}{p_2(z)}$ given only samples $z_1 \sim p_1$ and $z_2 \sim p_2$ is known as density ratio estimation (DRE).

Here we focus on two very different approaches:

- Discriminator based/adversarial methods.
- Kernel methods.

Methods for Implicit Variational Inference

Discriminators for Density Ratio Estimation

Idea: We can translate the DRE problem into a supervised learning problem.

Let D(z) be a discriminator network. Train D(z) to maximise the objective function:

$$\mathbb{E}_{\boldsymbol{q_{\phi}}}\left[\log D(z)\right] + \mathbb{E}_{\boldsymbol{p}}\left[\log(1-D(z))\right]$$

This has the interpretation:

- Draw $z_i \sim q_{\phi}$ with probability 1/2 and $z_i \sim p$ with probability 1/2 for i = 1, 2, ...N.
- Let the *label* $y_i = 1$ if z_i was drawn from q_{ϕ} , and 0 otherwise.
- This is the expected reward of a logarithmic scoring rule.

Proper Scoring Rules

Consider a classifier that returns a probability vector r(z) where $r_y(z)$ is the probability of class y given observation z.

- A proper scoring rule defines a reward variable that takes the value S(r(z), y) if y is the true class for z.
- The expected reward $\mathbb{E}_{z,y}[S(r(z),y)]$ is uniquely maximised by the true probabilities $r_y(z) = p(y|z)$
- The logarithmic scoring rule $S(r(z), y) = \log r_y(z)$ is strictly proper.

Hence the objective is maximised when

$$D^*(z) = p(y = 1|z)$$
$$= \frac{q_{\phi}(z)}{q_{\phi}(z) + p(z)}$$

If we assume the discriminator D(z) globally maximises the objective, then

$$D^*(z) = \frac{q_{\phi}(z)}{q_{\phi}(z) + p(z)}$$
$$\log \frac{q_{\phi}(z)}{p(z)} = \log \frac{D^*(z)}{1 - D^*(z)}$$

Therefore we can approximate the ELBO as:

$$egin{aligned} \mathcal{F}_{ heta,\phi} &= \mathbb{E}_{q_{\phi}} \left[\log p_{ heta}(x|z)
ight] - \mathbb{E}_{q_{\phi}} \left[\log rac{q_{\phi}(z)}{p(z)}
ight] \ &pprox \mathbb{E}_{q_{\phi}} \left[\log p_{ heta}(x|z)
ight] - \mathbb{E}_{q_{\phi}} \left[\log D(z) - \log(1 - D(z))
ight] \end{aligned}$$

where gradients of all terms are obtained using the reparameterisation trick.

Case study: Adversarial Variational Bayes (AVB)

Mescheder et. al. 2017 perform approximate inference on the 'eight schools' example.

- Two layer network for the implicit posterior and 5 layer ResNet for the discriminator.
- For every posterior update step, perform 2 steps for discriminator.

They compare AVB with full rank Gaussian VI and HMC.

Eight Schools Posterior

Adversarial Variational Bayes for VAEs

Mescheder et. al. 2017 also train a VAE with an implicit distribution as the encoder.

Figure 2. Schematic comparison of a standard VAE and a VAE with black-box inference model, where ϵ_1 and ϵ_2 denote samples from some noise distribution. While more complicated inference models for Variational Autoencoders are possible, they are usually not as flexible as our black-box approach.

Adversarial Variational Bayes for VAEs

(a) Training data

(b) Random samples

Figure 7. Independent samples for a model trained on MNIST

	$\log p(x) \ge$	$\log p(x) \approx$	
AVB (8-dim)	$(\approx -83.6 \pm 0.4)$	-91.2 ± 0.6	
AVB + AC (8-dim)	$\approx -96.3 \pm 0.4$	-89.6 ± 0.6	
AVB + AC (32-dim)	$\approx -79.5 \pm 0.3$	-80.2 ± 0.4	
VAE (8-dim)	-98.1 ± 0.5	-90.9 ± 0.6	
VAE (32-dim)	-87.2 ± 0.3	-81.9 ± 0.4	
VAE + NF (T=80)	-85.1	_	(Rezende & Mohamed, 2015)
VAE + HVI (T=16)	-88.3	-85.5	(Salimans et al., 2015)
convVAE + HVI (T=16)	-84.1	-81.9	(Salimans et al., 2015)
VAE + VGP (2hl)	-81.3	-	(Tran et al., 2015)
DRAW + VGP	-79.9	_	(Tran et al., 2015)
VAE + IAF	-80.8	-79.1	(Kingma et al., 2016)
Auxiliary VAE (L=2)	-83.0	-	(Maaløe et al., 2016)

Table 2. Log-likelihoods on binarized MNIST for AVB and other methods improving on VAEs. We see that our method achieves state of the art log-likelihoods on binarized MNIST. The approximate log-likelihoods in the lower half of the table were not obtained with AIS but with importance sampling.

Pitfalls of Discriminator-based Implicit VI

Get correct ELBO if the discriminator is optimal. However in practice:

- Discriminator may not be sufficiently flexible.
- Discriminator objective is Monte Carlo sampled.
- q_{ϕ} changes with every training iteration discriminator needs to 'catch up'.

Hence the approximate ELBO is biased and there is no way to estimate/bound the error - not a true lower bound.

Methods for Implicit Variational Inference

Kernel Implicit Variational Inference

Recall,

$$\mathcal{L}(\phi) = \mathbb{E}_{q_{\phi}}\left[p(x \mid z)\right] + \mathbb{E}_{q_{\phi}}\left[\log\left(\frac{p(z)}{q_{\phi}(z)}\right)\right]$$

As before, the first term can be handled directly with MC methods.

Main Idea: Define $r(z) = \frac{p(z)}{q_{\phi}(z)}$. Approximate r using kernel methods.

Solve the minimization problem:

$$\min_{\hat{r}\in\mathcal{H}}\frac{1}{2}\left(\int (\hat{r}(z)-r(z))^2q_{\phi}(z)dz\right)$$

Note that,

$$\frac{1}{2}\left(\int (\hat{r}(z)-r(z))^2 q_{\phi}(z)dz\right)=\frac{1}{2}\mathbb{E}_{q_{\phi}}\left[\hat{r}(z)^2\right]-\mathbb{E}_{p}\left[\hat{r}(z)\right]+C$$

We can sample from both p and q in order to approximate the loss function.

RKHS and Representer Theorem

A regularization term is introduced, and the objective function that is minimized is:

$$\min_{\hat{r} \in \mathcal{H}} \left(\frac{1}{2} \sum_{i=1}^{n_q} \hat{r}(z_i^q)^2 - \sum_{j=1}^{n_p} \hat{r}(z_j^p) + \frac{\lambda}{2} \|\hat{r}(z)\|_{\mathcal{H}}^2 \right)$$

The representer theorem tells us that there exists a set of coefficients $\{\alpha_i, \beta_i\}$ such that

$$\hat{r}(z) = \sum_{i=1}^{n_q} \alpha_i k(z_i^q, \cdot) + \sum_{j=1}^{n_p} \beta_j k(z_j^p, \cdot).$$

The proposed optimization function is convex, and has closed form solution,

$$oldsymbol{eta} = rac{1}{\lambda n_{oldsymbol{
ho}}} \mathbf{1}_{n_{oldsymbol{
ho}}} \ ext{and} \ oldsymbol{lpha} = -rac{1}{\lambda n_{oldsymbol{
ho}} n_{oldsymbol{q}}} (\mathbf{K}_{oldsymbol{q}} + \lambda \mathbf{I})^{-1} \, \mathbf{K}_{oldsymbol{q} oldsymbol{p}} \mathbf{1}_{n_{oldsymbol{
ho}}}.$$

This estimator for $\hat{r}(z)$ is used in place of $\frac{q_{\phi}(z)}{p(z)}$ to estimate the density ratio in the ELBO¹.

¹It may need to be clipped in order to be nonnegative

KIVI Algorithm

Algorithm 1 Algorithm for Approximate ELBO

Sample $z_i^p \sim p(z_i)$

Sample $z_i^q \sim q_\phi(z_i)$

Compute $\log(\hat{r}(z_i^q))$ according to the formulas given on the previous two slides.

Use this estimator in place of the density ratio. The first Msamples from q are used to estimate the likelihood term.

Application: Training A BNN

 Reduces number of parameter in inference hypernetwork with a matrix multiplication network

$$\Rightarrow \mathbf{X}^{(i+1)} = \operatorname{ReLU}\left(\mathbf{A}_1^{(i)}\mathbf{X}^{(i)}\mathbf{A}_2^{(i)}\right) + \mathbf{B}^{(i)}.$$

 Inference in a BNN with AVB (or similar adversarial methods) is not generally feasible due to the high dimensional input space for the discriminator.

KIVI on BNN for MNIST

Method	# Hidd	en # Weigh	its Test err.
SGD (Simard et al., 2003)	800	1.3m	1.6% ≈ 1.3%
Dropout (Srivastava et al., 2014) Dropconnect (Wan et al., 2013)	800	1.3m	≈ 1.3% 1.2%*
Bayes B. (Blundell et al., 2015),		500k	1.82%
with Gaussian posterior	800 1200	1.3m 2.4m	1.99% $2.04%$
Bayes B. (Blundell et al., 2015),		500k	1.36%*
with scale mixture prior	800	1.3m	1.34%*
VIII II	1200	2.4m	1.32%*
KIVI	400 800	500k 1.3m	1.29% $1.22%$
	1200	2.4m	1 27%

Figure 2: Results for MNIST classification. The left table shows the test error rates. * indicates results that are not directly comparable to ours: Wan et al. (2013) used an ensemble of 5 networks, and the second part of Blundell et al. (2015) changed the prior to a scale mixture. The plot on the right shows training lower bound in MNIST classification with prior-contrastive and KIVI.

Methods for Implicit Variational Inference

Define the posterior by the sampling process:

$$\epsilon \sim q(\epsilon)$$
 $z \sim q_{\phi}(z|\epsilon)$

Or equivalently:

$$q_{\phi}(z) = \int q_{\phi}(z|\epsilon)q(\epsilon)\,d\epsilon$$

 $q_{\phi}(z|\epsilon)$ is a simple distribution (e.g. exponential family) whose parameters are a complicated function of ϵ (e.g. neural network with weights ϕ).

This is called a semi-implicit distribution - still very flexible.

Methods for Implicit Variational Inference

Semi-Implicit Variational Inference (Yin and Zhou 2018)

A tractable lower bound on the ELBO can be derived via the chain rule of KL-divergences:

$$\mathcal{L} = \mathbb{E}_{z \sim q(z)} \left[\log \left(\frac{p(x, z)}{\mathbb{E}_{\epsilon \sim q(\epsilon)} \left[q(z|\epsilon) \right]} \right) \right]$$

$$\geq \mathbb{E}_{\epsilon \sim q(\epsilon)} \left[\mathbb{E}_{z \sim q(z|\epsilon)} \left[\log \left(\frac{p(x, z)}{q(z|\epsilon)} \right) \right] \right] =: \mathcal{L}_{\text{lower}}$$

Issue: Using this bound will lead to $q_{\phi}(z)$ to be a member of the same family of distributions as $q_{\phi}(z|\epsilon)$

A Sequence of lower bounds

Solution: Sequence of lower bounds such that $\mathcal{L}_{lower} = \mathcal{L}_0$ and $\lim_{K \to \infty} \mathcal{L}_K = \mathcal{L}$.

$$\mathcal{L}_{\mathcal{K}} = \mathbb{E}_{\epsilon^{0:\mathcal{K}} \sim q(\epsilon)} \left[\mathbb{E}_{z \sim q^{\mathcal{K}}(z|\epsilon^{0:\mathcal{K}})} \left[\log \left(rac{p(x,z)}{q^{\mathcal{K}}(z|\epsilon^{(0:\mathcal{K})})}
ight)
ight]
ight]$$

where

$$q^K(z|\epsilon^{0:K}) := rac{1}{K+1} \sum_{k=0}^K q(z|\epsilon^k)$$

These can be shown to be monotonically increasing.

Shortcomings of Implicit Inference

- Many more hyperparameteres to choose/tune than exponential family VI.
- Potentially unstable (particularly using adversarial approaches).
- Unclear how suitable approximate ELBO is for model comparison (except maybe with SIVI)
- Introduces bias into estimation of gradient of ELBO (except maybe UIVI)

Summary of Implicit VI

- Implicit VI allows us to use arbitrarily complicated variational posteriors
- This flexibility comes at a cost of needing to tune many hyperparameters, additional computational cost, or a risk of unstable algorithms.

References I

- [1] Ferenc Huszár. Variational inference using implicit distributions. arXiv preprint arXiv:1702.08235, 2017.
- [2] Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. Adversarial variational Bayes: Unifying variational autoencoders and generative adversarial networks. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 2391–2400. JMLR. org, 2017.
- [3] Dmitry Molchanov, Valery Kharitonov, Artem Sobolev, and Dmitry Vetrov. Doubly semi-implicit variational inference. arXiv preprint arXiv:1810.02789, 2018.
- [4] Jiaxin Shi, Shengyang Sun, and Jun Zhu. Kernel implicit variational inference, 2017.
- [5] Michalis K Titsias and Francisco JR Ruiz. Unbiased implicit variational inference. arXiv preprint arXiv:1808.02078, 2018.

References II

- [6] Dustin Tran, Rajesh Ranganath, and David Blei. Hierarchical implicit models and likelihood-free variational inference. In Advances in Neural Information Processing Systems, pages 5523–5533, 2017.
- [7] Mingzhang Yin and Mingyuan Zhou. Semi-implicit variational inference. In *International Conference on Machine Learning*, pages 5646–5655, 2018.