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Why we need good uncertainties

Neural networks extremely successful. But overconfident.

Hampers performance in:

• Reinforcement learning

• High-risk decision-making

Neural networks should know what they don’t know.

Figure 1: Reinforcement learning:
Mao et al. [2016]

Figure 2: Medical diagnosis



Bayesian neural networks

Standard neural networks learn point estimate of weights.
Bayesian neural networks learn posterior distribution of weights.

Uncertainty in parameters → Uncertainty in predictions

p(θ|D) ∝ p(D|θ)p(θ),

p(y∗|x∗,D) =

∫
p(y∗|x∗, θ)p(θ|D) dθ.

Intractable - can we approximate it scalably?



Mean-Field Variational Inference (MFVI)

Variational inference: p(θ|D) ≈ q(θ).
Mean field: q(θ) is factorised Gaussian.

q(θ) =
∏
i

N (θi ;µi , σ
2
i ).

Find ‘best’ q(θ) by minimising KL(q(θ)||p(θ|D)).

By maximising Evidence Lower Bound (ELBO):

ELBO =
N∑

n=1

Eq[log p(yn|xn, θ)]−KL(q(θ)||p(θ))

Get gradient of ELBO via Monte Carlo and the reparametrisation trick.



Does MFVI work?

MFVI gives state-of-the-art log-likelihoods on UCI regression. - Tomczak
et al. [2018]
But does poorly on contextual bandits, which requires good
uncertainties. - Riquelme et al. [2018]

What’s going on?

Simple sanity check - 1D regression:
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MFVI has uncertainty outside, but not in-between clusters of data.



Lack of ‘in-between’ uncertainty

Two reasons why:

1. Need dependencies to have in-between uncertainty and fit data.
Simple one-neuron network with fixed output weights,
y = ReLU(Wx + b):
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Figure 3: Varying ‘kink’ position while fitting data requires coordination
between bias and weight.
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Lack of ‘in-between’ uncertainty

Two reasons why:

2. We show that mean-field causes convex variance in a simplified case
- Var[fθ(x)] is convex in x!
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Figure 4: In a single hidden layer ReLU NN, mean-field leads to convex
uncertainty when being Bayesian over only output weights.
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Figure 4: In a single hidden layer ReLU NN, mean-field leads to convex
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What about full covariance VI (FCVI)?

Could also optimise entire covariance matrix using VI. Better, but:

• difficult to optimise.

• still overconfident in-between.
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Back to a classical full-covariance technique

Laplace approximation - one of the first BNN methods - MacKay [1992].

• Find mode of posterior.

• Estimate curvature there and fit a full-covariance Gaussian.

• Linearise output of the network.

• Solve linear Gaussian model to make predictions.

Can this classical technique provide in-between uncertainty?



Laplace approximation - 1D performance

Yes it can! (Have to use tanh activations for nice linearisation).
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Does this observation extend to higher dimensional datasets?



UCI datasets revisited

UCI a popular BNN benchmark: Hernández-Lobato and Adams [2015]
Standard splits uniformly sample test set - doesn’t test in-between
uncertainty.
We create new splits with middle third as test set.
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A good method must:
• Do well on standard splits - fit the data.
• Not fail catastrophically on gap splits - not overconfident.



Standard split UCI results - higher is better
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Standard split UCI results - higher is better
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No clear winner, but FCVI does poorly.



Gap split UCI results - higher is better
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MAP fails catastrophically on energy and naval.
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MAP fails catastrophically on energy and naval. So does MFVI!
FCVI does better - unsurprising as it underfits.



Gap split UCI results - higher is better
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MAP fails catastrophically on energy and naval. So does MFVI!
FCVI does better - unsurprising as it underfits.
Only Laplace does well on standard and gap splits.



Conclusions

MFVI fails to provide in-between uncertainty.

Standard UCI fails to test for it.

Less scalable classical methods do provide it.

Take home message: Think about how approximations in parameter
space restrict the expressiveness of uncertainty in function space.
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Image credits: Figure 2 taken from https://www.iqvis.com/blog/.
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