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Challenges for BNNs

1 How can we specify a good prior?
• Cold posterior effect suggests challenges [Wenzel et al., 2020].
• Renewed interest [Wilson and Izmailov, 2020, Fortuin et al., 2021].

2 How can we perform good inference?
• MCMC and VI don’t come with practical guarantees.
• Is performance due to the Bayesian model or the approximation?

These challenges are linked.

• Often priors are chosen by evaluating the posteriors they induce.
“Ye priors shall be known by their posteriors” [Good, 1983].

• Lack of reliable inference hampers prior evaluation.

This talk will focus on analysing approximate inference.



Approximate inference

We focus on variational methods, which assume some tractable
parametric form for approximate posterior:

p(y∗|x∗,D) = Ep(θ|D) [p(y∗|x∗, θ)] ≈ Eq(θ) [p(y∗|x∗, θ)] , q(θ) ∈ Q.

• p(θ|D) is exact posterior, q(θ) is approximate posterior.

• Q is the variational family, e.g. mean-field (fully-factorised)
Gaussian, or Monte Carlo dropout.

• Choose q ∈ Q that minimises KL(qφ(θ)‖p(θ|D)).

Q

• q0(θ)

•q∗(θ)
• p(θ|D)



Criteria for success

1 The variational family must contain good approximations
to the posterior.

2 The method must then select a good approximate
posterior within this family.

How can we tell if the approximation is good? Need a reference.
• Very difficult problem in large models.
• Hamiltonian Monte Carlo possible, but slow, and hard to diagnose.

Deep BNNs approach Gaussian processes as width increases
[Matthews et al., 2018]:

Restrict our study to small datasets, and regression tasks.
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How does MFVI compare with NN-GP?

Bayesian optimisation on toy dataset, using

1 single hidden layer MFVI

2 the equivalent infinite-width GP

GP MFVI

GP versus MFVI BayesOpt using upper confidence bounds: iteration 15

MFVI still can’t find optimum after 15 iterations! Why?



Single hidden layer approximate BNNs

Let V[f (x)] := E[(fθ(x)− E[fθ(x)])2] be predictive variance at x .

Theorem 1 (F., B., Li & Turner 2020).

There exist line segments in input space, −→pq, such that for any
single hidden layer ReLU network with a mean-field Gaussian
weight distribution, for all r ∈ −→pq,

V[f (r)] ≤ V[f (p)] + V[f (q)].

Theorem 2 (F., B., Li & Turner 2020).

For any single hidden layer ReLU network with an MC Dropout
weight distribution, if dropout is not applied to the input layer,
V[f (x)] is convex in x.

These 1HL BNNs can’t have in-between uncertainty!



Numerical verification of theorems 1 and 2

• Obtain reference predictive variance function from a GP.

• Perform gradient descent to directly minimise
(Vapprox[f (x)]− Vtarget[f (x)])2 on a grid.



What about an actual inference task?

References for exact predictive both show in-between uncertainty.



What about an actual inference task?

• VI loses in-between uncertainty.
• In this case, approximate inference, rather than the model, is

provably responsible!



Back to the criteria

1 The approximating family must contain good
approximations to the posterior. 7

2 The method must then select a good approximate
posterior within this family.

If in-between uncertainty desired, the first criterion is not satisfied for
mean-field Gaussian or MC Dropout ReLU nets with one hidden layer.

Hence cannot be fixed by:

• Choosing a better prior.

• Using a better optimiser.

• Using a tempered posterior, e.g., Wenzel et al. [2020].

• Minimising a different divergence.

• Etc.

What about deeper networks?



Deep networks can have in-between uncertainty

Theorem 3 (F., B., Li & Turner 2020).

Let X ⊂ Rd be compact, and m : X → R, v : X → R+ be both
continuous. For any ε > 0, there exists a sufficiently wide 2HL
ReLU network f , with a mean-field Gaussian/MC Dropout
distribution satisfying ‖E[f ]−m‖∞ < ε and ‖V[f ]− v‖∞ < ε.

Universality theorem for first two moments of marginal of predictive
distribution of random networks.

Criteria for success in deep networks

1 The approximating family must contain good
approximations to the posterior. 3

2 The method must then select a good approximate
posterior within this family. ?



Variational Inference in Deep Nets

Does theorem 3 imply good uncertainty quantification with VI in
deep BNNs?

−3 −2 −1 0 1 2 3

100

101

1HL

5HL

9HL

Overconfidence ratio (VGP [f ]/VMFVI [f ])1/2 between two clusters of data.



Limitations and conclusions

Limitations:

• References for exact inference difficult in large models.

• Focus on small-scale regression datasets.

• Theorem 3 doesn’t explain observed behaviour in deep nets.

• In-between uncertainty isn’t everything — good sanity check.

Conclusions:

• Approximate inference with mean-field Gaussian and MC dropout
posteriors can lose qualitative features of the exact predictive.

• In 1HL BNNs, in-between uncertainty is provably absent.

• In deeper BNNs, in-between uncertainty is empirically lost.

• We are still very far from understanding exact vs. approximate
inference in, e.g. large convolutional networks.

Thanks for listening!
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Line segments of bounded variance

2 example line segments in BNN input space where theorem 1 applies.

• V[f (r)] ≤ V[f (p)] + V[f (q)] on the red line segment.

• If input is 1-dimensional, applies to any line segment crossing origin.

• Empirically find in-between uncertainly lacking on random line
segments.

• Could be symptomatic of more general pathologies.



Proof sketch of theorem 2

Dropout applied independently to each neuron, so:

V[f (x)] = V

[
H∑
i=1

wiφ (ai (x)) + b

]
(1)

=
H∑
i=1

V [wiφ (ai (x))] + V[b] (2)

• As the input weights are deterministic,

V [wiφ (ai (x))] = V [wi ]φ (ai (x))2

• ai (x) is an affine function of x , and φ2 is convex, so φ (ai (x))2 is
convex in x .

• V[f (x)] is a positive linear combination of convex functions!



Intuition for theorem 1

Proof more involved than dropout case.

• Single hidden layer NNs are universal function approximators.

• Surprising that variance of a mean-field BNN is not universal!

Intuition:

Mean field =⇒ Variance of sum = Sum of variances

But variance of each neuron is half bowl shaped:
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So variance of any sum is approximately bowl-shaped.



Construction for mean-field QMF

Input
Hidden
layer 1

Hidden
layer 2

Output

z1

x1 z2

z3 m+b

x2 z4 f

z5
√
v

x3 z6 1

N (1, 0)

N (−b, 0)
N (0, 1)

with b = minx∈Am(x).
So f ≈ 1 · φ(m + b) + γ · φ(

√
v)− b ≈ m + γ

√
v , γ ∼ N (0, 1).



Numerical verification of theorem 3

Try to fit mean and variance function from before, but with 2HL net:
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Variational Inference in Deep Nets

Does theorem 3 imply good uncertainty quantification with VI in
deep BNNs?

2 1 0 1 2
x1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

x 2

[f(x)]

2 1 0 1 2
5

0

5

f(x
(

))

0.00

1.68

3.36

5.04

6.72

8.40

10.08

11.76

13.44

15.12

Gaussian Process

2 1 0 1 2
x1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

x 2

[f(x)]

2 1 0 1 2
5

0

5

f(x
(

))
0.03

0.31

0.60

0.89

1.17

1.46

1.74

2.02

2.31

2.59

Mean Field VI



Effect of initialisation

Is this behaviour due to the objective, the optimiser, or something else?

• Initialise 2HL BNN by matching GP mean and variance.
• Then optimise mixture of ELBO and squared error objective.
• Gradually move to just optimising ELBO.

BNN that starts with in-between uncertainty loses it once ELBO optimisation
converges!
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